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Climate SolutionS in California agriCulture

California agriculture is particularly vulnerable to the im-
pacts of climate change. Climate scientists report that state 
water supplies will become increasingly limited, threaten-
ing a fundamental resource for the agriculture industry.1 
Also predicted is greater pressure from weeds and pests, 
increased animal diseases, reduced winter chill hours, and 
changing intensity and number of storms.a

The significance of the impacts of climate change on Cali-
fornia’s important agriculture industry cannot be overstated. 
California’s nearly 78,000 farms and ranches generated over 
$42.6 billion in 2012.2 Producing over 400 food and fiber 
products, California agriculture represents nearly every crop 
produced in the U.S.3 Thus, the future of California agri-
culture in the face of a changing climate is important not 
just for the state’s economy but also for the nation’s food 
security.  

To protect California agriculture in the coming decades, 
greenhouse gas (GHG) emissions must be reduced and the 
worst impacts of climate change must be averted. Agricul-
ture can make significant, unique and profound contribu-
tions to meet this challenge. 

Here we summarize the current peer-reviewed scientific 
literature on agriculture and climate mitigation, with a focus 
on studies specific to California conditions, and in consulta-
tion with several academic experts in the field. 

While the focus of this review is on methods for reducing 
GHG emissions and sequestering carbon in agriculture, 
it is important to note that many of the climate-focused 
measures also prepare agriculture to better cope with the 
impacts of climate change and provide additional environ-
mental and health benefits both on and off the farm. 

Finally, as California considers GHG emissions issues in 
agriculture, it is important to take a whole-farm system ap-
proach rather than a practice-by-practice approach. Altering 
one agricultural practice to reduce GHG emissions may lead 
to the unintended consequence of increasing GHG emis-
sions elsewhere in the farm system. Considering agricultural 
practices as integrated parts of the whole farming system 
will provide a more complete picture of the opportunities 
to reduce GHG emissions and provide multiple benefits. 
Sustainable agricultural systems, based on ecological prin-
ciples, offer this holistic approach.4

Water & Energy Efficiency, 
Renewable Energy Production
There is no “one size fits all” set of best practices for achiev-
ing on-farm water use efficiency and reduced dependence 
on fossil fuel-based energy. Instead, such activities must 
take into consideration the operation’s production, soils, 
water sources, and other regional variables. Growers must 
also consider the value of gains in on-farm water efficiency, 
balanced against potential trade-offs in diminished ground-
water recharge or increased energy demand, described in 
more detail below. 

Improving water use efficiency can deliver energy savings 
for farmers and reduce energy-related GHG emissions. Each 
year, California agricultural irrigation consumes over 10 
billion kilowatt hours (kWh) of electricity—nearly enough 
energy to power 1.5 million residences.5,6 Furthermore, the 
vast majority of that power consumption occurs between 
the months of May and October, when the state’s energy 
demand is at its highest. During the summer months, 

ph
ot

o 
cr

ed
it:

 U
SD

A



2 

energy used for groundwater pumping in California ex-
ceeds the amount of energy required to run the State Water 
Project, the Colorado River Aqueduct and the Central Valley 
Project combined.7 However, optimizing on-farm irrigation 
efficiency through close monitoring and evaluation can 
achieve significant water and energy savings.8 

The most widely used on-farm water use efficiency meth-
ods are drip and micro-sprinkler systems. These technolo-
gies can produce the highest crop yield per unit of water 
applied and can achieve irrigation efficiencies as high as 90 
percent compared to flood irrigation at 60 to 85 percent.9 
Studies have also found that subsurface drip irrigation—
particularly when combined with reduced tillage practices 
and fertigation (the application of fertilizers through irriga-
tion systems)—can significantly reduce nitrous oxide emis-
sions.10,11  

The benefits of drip and micro-irrigation systems must be 
weighed against the potential for reduced groundwater 
recharge compared to flood or furrow irrigation, an impor-
tant consideration as the state faces the diminished water 
availability predicted with climate change. The low energy 
requirements of flood irrigation should also be considered.12 

Additional management practices can improve water use 
efficiency and offer other benefits. For example, cover crops, 
reduced tillage practices, and organic soil amendments that 
can decrease evapotranspiration by 30 to 50 percent13 also 
help build soil organic matter, promoting water infiltration 
and storage.14 Dry farming techniques can improve soil 
moisture retention and reduce or eliminate the need for irri-
gation, instead relying on seasonal rainfall.15 On-farm ponds 
can reduce runoff, recharge groundwater, store rainfall, and 
contribute to regional flood management efforts.16 

Energy efficiency measures and on-farm renewable en-
ergy production can provide energy and cost savings to 
farms and ranches while reducing GHG emissions. Before 
investing in renewable energy production, growers should 
maximize energy efficiency on their farms and in packing, 
cooling, and shipping operations to avoid oversizing their 
renewable energy systems. Energy audits, available through 
California’s electric utilities and the Natural Resources 
Conservation Service (NRCS), can identify opportunities to 
increase efficiency.17

In terms of renewable energy, wind turbines, solar panels, 
geothermal and bioenergy projects on agricultural land can 
increase the state’s production of renewable energy and 
also generate income for farmers and ranchers through the 
sale of excess energy.18,19,20 By 2012, the number of California 
farms reporting the installation of on-farm renewable ener-
gy systems nearly tripled to 5,845, up from the nearly 2,000 
systems reported in 2009.21,22 There is considerable potential 
for growth with continued financing and outreach.

Soil Building
Agriculture and forestry can serve as terrestrial “sinks” of car-
bon dioxide, removing our most ubiquitous greenhouse gas 
from the atmosphere and storing it in soils, trees, and other 
plant biomass. This process is known as carbon sequestra-
tion.23 The ability of farm and rangeland to sequester carbon 
depends on soil type, regional climate, crop systems, and 
management practices.24

Among the agricultural soil management practices that 
have significant potential to sequester carbon are con-
servation tillage, cover cropping, agroforestry techniques, 
improving rangeland and pasture management, adding 
organic amendments like compost, and reducing and prop-
erly timing the application of nitrogen fertilizer inputs.25,26,27 

Conservation tillage can stabilize soil carbon by decreas-
ing the mechanical disturbance to soil aggregates and 
minimizing the conversion of carbon in soil and crops to 
atmospheric carbon dioxide.28 Also, replacing synthetic 
fertilizers with nitrogen-fixing cover crops can halve carbon 
dioxide emissions.29 Soil management practices used in 
combination, such as cover cropping and applying compos-
ted manure or plant material, show the greatest potential 
for building soil organic matter, sequestering carbon, and 
reducing emissions of carbon dioxide and the potent GHG, 
nitrous oxide.30,31,32,33
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Many of the soil management practices that increase 
carbon sequestration also reduce nitrogen inputs and 
therefore can lower nitrous oxide emissions. These practices 
include conservation tillage and the application of compos-
ted manure and green waste as an alternative to synthetic 
nitrogen fertilizers.34,35,36 These sources of nitrogen have 
the added benefit of releasing nitrogen slowly over time to 
better suit plant nutritional needs, rather than in periodic 
large applications that leach through soils more quickly. For 
example, the use of cover crops can reduce nitrate contami-
nation in groundwater by as much as 83 percent.37

Organic Farming 
Organic systems integrate ecologically based practices to 
boost fertility, build soil organic matter, conserve natural 
resources, and mitigate GHG emissions.38,39,40 Organic farm-
ing operations provide multiple opportunities to reduce 
agricultural GHG emissions and sequester carbon.41,42 Many 
of the techniques used by organic producers are incorpo-
rated on conventional farms. 

A critical distinction between conventional and organic 
systems is that organic farmers are prohibited from using 
the fossil fuel-based synthetic fertilizers, herbicides, and 
pesticides that can increase a farm’s carbon footprint.43 In-
stead, organic systems use inputs with up to 30 percent less 
embedded energy than conventionally managed systems, 
resulting in lower net GHG emissions.44,45 Although organic 
producers may use more fuel (because increased tillage 
may be necessary to deal with weeds in place of synthetic 
herbicides), organic systems often have smaller carbon foot-
prints per acre than their conventional counterparts when 
all energy inputs are taken into account.46,47 

While there is considerable variability between farms, 
seasons, soils, and other conditions, studies have found that 
soils under organic management—including use of animal 
manures, compost and cover crops—exhibit significantly 
more carbon sequestration than soils managed convention-
ally using synthetic fertilizers.48,49,50,51,52 

In an eight-year study in California, soil organic carbon 
increased 19 percent in organic and low-input systems, 
compared to an increase of only 10 percent in conventional 
agriculture.53 A twelve-year study in California showed a 36 
percent increase in carbon sequestration with the use of 
organic practices like green manures and animal manures, 
despite increased tillage compared to the conventional sys-
tem.54 USDA research shows that organic agriculture, even 
when using tillage, can sequester more carbon than no-till 
conventional agricultural systems.55 

Rangeland Management
Rangelands cover approximately half of California’s total 
land area and approximately 34 million acres are actively 
grazed.56 The conservation and management of both 
grazed and ungrazed rangeland can be critical for ad-
dressing climate change because, while most rangeland 
has limited potential for carbon sequestration in soils and 
woodlands, over this vast acreage the combined potential 
for sequestering atmospheric carbon is significant.57,58 

While there is great variability in the soil carbon storage 
potential across California’s diverse rangelands and climate 
conditions,59,60 management practices can improve carbon 
storage, 61,62,63,64 particularly in the wetter areas of California.65 

The Many Benefits of Climate-Friendly Farming 
Many of the agricultural practices that reduce GHG 
emissions and sequester carbon can also provide 
numerous environmental and public health benefits. 
They can also enhance the resilience of California 
farms and ranches to climate impacts such as drought, 
flooding, new pests and diseases, and extreme weath-
er events. For example:

g On-farm water conservation reduces agriculture’s 
vulnerability to California’s cycles of drought and 
water scarcity. 

g Improved air quality results from the use of renew-
able energy and reduced fossil fuel-based inputs.

g Cover crops and tailwater ponds can reduce nitrate 
pollution in groundwater. 

g Farmscaping provides habitat for beneficial insects, 
pollinators and wildlife.

g Increasing soil organic matter improves soil water 
retention, reduces soil erosion and provides flood 
control.
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Restoring woody vegetation (e.g., oak trees) and riparian 
habitats can increase carbon sequestration on rangelands, 
and there is evidence that increasing the population of na-
tive perennial grasses also stores more carbon.66,67

Managing the timing, duration and intensity of livestock 
grazing can bolster aboveground species richness and 
productivity, which is correlated with increased soil car-
bon.68,69,70,71,72 Increasing forage quantity with fertilization 
and organic amendments has been shown to increase soil 
carbon.73 Whereas uncomposted manure additions have 
been correlated to increased GHG emissions,74 a model 
based on two field sites found that the application of 
compost to rangelands can lead to soil carbon sequestra-
tion that is expected to persist for many years.75 Carbon 
sequestration in rangeland soils has many benefits, includ-
ing reduced erosion and increased water infiltration and 
storage in soils.76

Livestock Production
Livestock-related methane emissions account for more than 
half of California agriculture’s GHG emissions and over three 
percent of the state total,77,78,79 the majority from dairy and 
beef cattle manure management and the digestive pro-
cesses (enteric fermentation) of the animals. Importantly, 
there are promising opportunities to reduce this impact by 
altering livestock diets, manure management techniques, 
breeding strategies, and managed grazing practices.80

Improving the digestibility and nutrient composition of 
animal feed can reduce methane emissions generated 
by enteric fermentation,81,82 as can grazing that provides 
livestock with high quality forage.83,84 Furthermore, grassfed 
livestock may require less fossil fuel energy inputs compared 
to conventional feedlot livestock. One study found half the 
energy demand in grassfed systems.85 

Another source of GHG emissions in conventional livestock 
rearing systems is manure management. Stockpiling ma-

nure in ponds and lagoons leads to anaerobic decomposi-
tion, which emits methane and nitrous oxide.86 Capture of 
methane from manure storage lagoons and conversion to 
electricity via biodigestion offers a significant opportunity 
for both emissions reductions and emissions avoidance 
by offsetting fossil fuel use.87 The application of anaerobic 
digestate or composted manure to soils can add organic 
matter and likely reduce net GHG emissions.88 Alternatively, 
when animals are grazed, their manure is applied directly 
to rangelands, thereby avoiding anaerobic decomposition 
and the associated methane and nitrous oxide emissions of 
confined livestock systems.89

Farmscaping
Farmscaping describes a broad range of land management 
practices that incorporate perennial and annual flora into 
agricultural production to achieve a variety of agronomic 
and environmental benefits.90 Reforesting rangelands, plant-
ing hedgerows along field margins, and installing tailwater 
ponds to capture irrigation runoff are common farmscap-
ing techniques.91 The most important climate benefits of 
farmscaping include carbon storage in plants and soil and 
reduced nitrous oxide emissions.92,93,94

Incorporating trees, shrubs, or other types of woody vegeta-
tion into rangeland or cropland can increase carbon seques-
tration.95,96 Studies on organic farms found that riparian and 
hedgerow habitats with woody vegetation stored up to 20 
percent of the farm’s total carbon, despite occupying less 
than six percent of the total area.97,98 

Planting hedgerows along the margins of farms, establish-
ing woody biomass in riparian zones, and replanting oak 
woodlands on rangeland offer some of the best opportuni-
ties to sequester atmospheric carbon.99,100 Riparian areas 
can store nearly twice as much carbon per acre as adjacent 
rangeland and 25 percent more carbon compared to crop-
land.101 
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Establishing riparian buffer zones and planting hedgerows 
also allow for the uptake of excess nitrogen that otherwise 
would have been lost, decreasing by 28 to 42 percent the 
nitrate that can pollute streams and groundwater.102 Tailwa-
ter ponds can reduce nitrate contamination in groundwater 
by as much as 97 percent.103

Winter cover crops improve nitrogen use efficiency by scav-
enging for residual soil nitrogen and increasing its availabil-
ity for target crops, which reduces the amount of fertilizer 
needed.104,105,106 

Farmscaping provides habitat for beneficial insects and 
pollinators,107,108,109,110 assisting with pest control and helping 
offset the recent decline in pollinator populations. 

Conserving California Farm and 
Rangeland
California loses an average of over 50,000 acres of agri-
cultural land annually, which has a negative impact on 
climate change mitigation and adaptation opportunities 
in the state.111,112,113 Due to the potential of rangelands to 
sequester small amounts of carbon over vast acreages, the 
ongoing loss of rangelands from urban development and 
the conversion to more intensive forms of agriculture have 
implications for climate mitigation.114

Farmland conservation offers a multitude of climate ben-
efits, such as carbon sequestration, reduced GHG emissions, 
renewable energy production, and greater resilience to 
climate change impacts for both cities and rural areas.115 An 
acre of urban land was found to emit 70 times more GHG 
emissions compared to an acre of irrigated, conventionally 
managed cropland.116,117 

Research suggests that conserving farmland at the urban 
edge slows the spread of sprawl and reduces transporta-
tion-related GHG emissions.118 Furthermore, agricultural land 
around urban areas may help cool the “hot spots” created 

by cities through the albedo effect (the tendency of urban 
areas to absorb more solar radiation). Such cooling will help 
offset the impacts of increased temperatures.119,120 Farmland 
preservation provides an array of additional benefits, such as 
maintaining local food sources for Californians, enhancing 
biodiversity and wildlife habitat, and aiding in water filtra-
tion and groundwater recharge.121,122

Supporting Climate-Friendly 
Agriculture
Farmers and ranchers can be part of a climate solution for 
California and the nation as a whole. Encouraging sustain-
able agricultural practices can reduce GHG emissions, 
enhance on-farm capacity for carbon sequestration, and 
provide numerous environmental and health co-benefits. 

More California-specific research on climate change and 
agriculture is needed. Technical assistance is required to 
translate those research findings into real opportunities for 
GHG emission reductions on California’s farms and ranches. 
When there are costs or perceived risks of making the transi-
tion to climate-friendly practices, financial incentives for 
farmers and ranchers are essential. 

Researchers at UC Davis find that California producers will 
adopt practices to mitigate climate change if they are given 
realistic payments and assistance.123 Increased funding from 
USDA conservation programs, as well as investments at the 
state and national levels from carbon pricing policies, are 
needed to support agriculture’s role in climate protection.

California agriculture can be a leader in mitigating and 
adapting to climate change. With additional research, tech-
nical assistance and financial incentives, we can ensure that 
agriculture remains a viable, innovative, and ecologically 
and economically sustainable industry for years to come.

About CalCAN
The California Climate and Agriculture Network (CalCAN) is a coalition 
of the state’s leading sustainable agriculture organizations and farmer 
allies. We came together out of concerns for climate change impacts 
on California agriculture and to advance sustainable agricultural 
solutions to a changing climate. Since 2009, we have cultivated 
farmer leadership to serve as the sustainable agriculture voice on 
climate change policy in California.

California Climate and Agriculture Network

(916) 441-4042 or
(707) 823-8278
info@calclimateag.org
www.calclimateag.org
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